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Full marks may be obtained for answers to ALL questions. 
There are 8 questions in this question paper. The total mark for this paper is 75. 
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You must ensure that your answers to parts of questions are clearly labelled. 
You must show sufficient working to make your methods clear to the Examiner. Answers 
without working may gain no credit. 
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1.             = y . 

 
It is given that y = 0.2 at x = 0. 
 

(a) Use the approximation  » , with h = 0.1, to obtain an estimate of the value of y 

at x = 0.1. 
(2) 

(b) Use your answer to part (a) and the approximation  » , with h = 0.1, to obtain 

an estimate of the value of y at x = 0.2. 
 

Give your answer to 4 decimal places. 
(3) 

 
 

2.     (1 – x2)  – x  + 2y = 0. 

At x = 0, y = 2 and  = –1. 

 

(a) Find the value of  at x = 0. 

(3) 

(b) Express y as a series in ascending powers of x, up to and including the term in x3. 
(4) 
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3.  Given that  is an eigenvector of the matrix A, where 

A = , 

 

(a) find the eigenvalue of A corresponding to , 

 (2) 

(b) find the value of p and the value of q. 
(4) 

 

The image of the vector  when transformed by A is . 

 
(c) Using the values of p and q from part (b), find the values of the constants l, m and n. 

(4) 
 
 
4. (a) Given that z = cos q  + i sin q , use de Moivre’s theorem to show that 
 

zn +  = 2 cos nq. 

 (2) 

(b) Express 32 cos6 q in the form p cos 6q + q cos 4q + r cos 2q + s, where p, q, r and s are 
integers. 

(5) 

(c) Hence find the exact value of . 

 (4) 

 

5. Prove by induction that, for n Î ℤ+, = n(2n – 1)(2n + 1). 

(5) 
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6. Given that            f(n) = 34n + 24n + 2, 
 

(a) show that, for k Î ℤ+, f(k + 1) – f(k) is divisible by 15, 
(4) 

(b) prove that, for n Î ℤ+, f (n) is divisible by 5, 
(3) 

(c) show that it is not true that, for all positive integers n, f(n) is divisible by 15. 
(1) 

 
 
7. The points A, B and C have position vectors, relative to a fixed origin O,  
 
     a = 2i – j, 
 
     b = i + 2j + 3k, 
 
     c = 2i + 3j + 2k, 
     

respectively. The plane Π passes through A, B and C. 
 

(a) Find . 
(4) 

(b) Show that a cartesian equation of Π is 3x – y + 2z = 7. 
(2) 

The line l has equation (r – 5i – 5j – 3k) × (2i – j – 2k) = 0. The line l and the plane Π intersect at 
the point T. 
 
(c) Find the coordinates of T. 

(5) 

(d) Show that A, B and T lie on the same straight line. 
(3) 
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8. The transformation T from the z-plane, where z = x + iy, to the w-plane, where w = u + iv, is 
given by 

w = ,   z ¹ 0. 

 
(a) The transformation T maps the points on the line with equation y = x in the z-plane, other 

than (0, 0), to points on a line l in the w-plane. Find a cartesian equation of l. 
(5) 

(b) Show that the image, under T, of the line with equation x + y + 1 = 0 ���in the z-plane is a 
circle C in the w-plane, where C has cartesian equation 

 
u2 + v2 – u + v = 0. 

(7) 

(c) On the same Argand diagram, sketch l and C. 
(3) 
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